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NUMERICAL ANALYSIS OF AXISYMMETRIC

BUCKLING OF CONICAL SHELLS

UDC 539.370L. I. Shkutin

Nonlinear boundary-value problems of axisymmetric buckling of conical shells under a uniformly
distributed normal pressure are solved by the shooting method. The problems are formulated for a
system of six first-order ordinary differential equations with independent rotation and displacement
fields. Simply supported and clamped cases are considered. Branching solutions of the boundary-
value problems are studied for different pressures and geometrical parameters of the shells. The
nonmonotonic and discontinuous curves of equilibrium states obtained show that collapse, i.e., snap-
through instability is possible. For a simply supported shell, multivalued solutions are obtained for
both external and internal pressure. For a clamped thin-walled shell, theoretical results are compared
with experimental data.

The earliest analysis of nonlinear deformation of shallow spherical domes was given in [1, 2], and many
theoretical and experimental studies have been performed in this direction ever since. The cases of a central point
force and normal pressure distributed over the entire surface of a dome or over a part of it were considered. Results
of these studies are briefly reviewed in [3]. Numerical analysis was performed within the framework of the nonlinear
model of shallow shells [4, 5]. To solve nonlinear boundary-value problems of axisymmetric deformation of a dome,
the step-by-step (with respect to the loading parameter) method was employed. This method is used to find solutions
branching from the basic one, which requires special techniques for constructing solutions in the neighborhood of
the bifurcation point. Therefore, it is difficult to obtain isolated solutions characteristic of nonlinear problems
of deformation of bars, plates, and shells. An exception is the work of Feodos’ev [6] who solved the problem of
nonlinear deformation of a clamped spherical dome loaded by a uniformly distributed pressure by the shooting
method. The author [7, 8] employed this method to analyze the branched shapes of bars and arches in bending.

In the present paper, we use the shooting method to solve the boundary-value problems of axisymmetric
buckling of a conical dome, which is difficult to analyze because of the pointed apex. The nonlinear boundary-value
problems are formulated within the framework of the mathematical model of deformable shells with independent
fields of finite displacements and rotations [9, 10].

System of Equations. We consider a dome-like shell with an axisymmetric base surface A. On the
surface, we introduce a curvilinear coordinate system tJ with a local orthonormal basis aJ(t1, t2) (J = 1, 2, 3). The
parameters t1 ≡ t ∈ [0, 1], t2 ∈ [0, 2π], and t3 ∈ [−h, h] are reckoned along the meridian, parallel, and normal to the
surface, respectively (2h is the thickness of the dome). We also introduce a cylindrical coordinate system (y, t2, z)
with an orthonormal basis eJ(t2). The surface basis is obtained from the cylindrical basis by rotation through the
angle θ2(t) about the vector e2. In this case, a2 = e2 and the positive direction of e2 and the positive value of the
angle are determined by the right-hand rule. The rotation transformation is given by the matrix

Θ2 =

 cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

 .
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In the initial (stress-free) state, the meridian of the dome is defined by the parametric equations

y = r2(t), z = r3(t), θ = θ2(t) ∀t ∈ [0, 1]. (1)

By definition, we have the relations dr2/ds1 = cos θ2, dr3/ds1 = − sin θ2, ds1 = l dt, and ds2 = r2 dt2, where ds1

and ds2 are the elementary arcs of the meridian and parallel, respectively, and l is the length of the meridian.
We consider the axisymmetric deformation of the dome, for which the base surface remains axisymmetric

and is defined by equations similar to (1)

y = z2(t), z = z3(t), θ = θ(t) ∀t ∈ [0, 1],

where z2 and z3 are unknown cylindrical coordinates of a point and θ is the sought angle of rotation of the local
basis relative to the cylindrical one. The matrix

Θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


transforms the cylindrical basis eJ to the rotated basis a0

J = Θ · eJ .
To analyze the axisymmetric deformation of the dome, we use the equations of the nonlinear model of a

deformable shell with independent finite displacements and rotations [9, 10]. The material of the dome is assumed
to be isotropic and linearly elastic.

The initial system of equations comprises
— the moment relations

U11 = (1− ν2)F−1X11 − νU22, V11 = (1− ν2)H−1Y11 − νV22,
(2)

U13 = γF−1X13, X22 = νX11 + FU22, Y22 = νY11 +HV22,

which follow from (2.9) in [10];
— the kinematic relations

V11 = (θ − θ2)′, V22 = r−1
2 (sin θ − sin θ2), U22 = r−1

2 (z2 − r2),
(3)

z′2 = (1 + U11) cos θ + U13 sin θ, z′3 = −(1 + U11) sin θ + U13 cos θ,

which follow from (1.6) in [10];
— the static equations

(r2X1)′ −X22 + r2P1 = 0, (r2X3)′ + r2P3 = 0,

(r2Y11)′ − Y22 cos θ − r2X13 + r2Q2 = 0, (4)

X11 = X1 cos θ −X3 sin θ, X13 = X1 sin θ +X3 cos θ,

which follow from (1.7) in [10]. In system (2)–(4), F = 2hE, 3H = 2h3E, γ = 2(1 + ν), E is Young’s modulus, ν is
Poisson’s ratio, UiJ(t), Vii(t), XiJ(t), and Yii(t) are the components of the metric and flexural strains, forces, and
moments in the rotated basis, X1(t), X3(t), P1(t), P3(t), and Q2(t) are the components of the forces, surface loads,
and moments in the cylindrical basis; the prime denotes differentiation with respect to s1; i = 1, 2. Equations (2)
and the first three equations in (3) are formulated in the rotated basis, whereas Eqs. (4) and the last two equations
in (3) are formulated in the cylindrical basis.

1058



System (2)–(4) can be written in the form

y′0 = θ′2 + x−1[(1− ν2)y1 − ν(sin y0 − sin θ2)],

y′1 = x−1(νy1 + sin y0 − sin θ2) cos y0 + ε−1y7 − xq2,

y′2 = εγx−1y7 sin y0 + (1 + y8) cos y0,

y′3 = εγx−1y7 cos y0 − (1 + y8) sin y0, (5)

y′4 = x−1[νy6 + ε−1(y2 − x)]− xp1,

y′5 = −xp3,

y6 = y4 cos y0 − y5 sin y0, y7 = y4 sin y0 + y5 cos y0, y8 = x−1[(1− ν2)εy6 − ν(y2 − x)],

where y0 = θ, y1 = xY11l/H, y2 = z2/l, y3 = z3/l, y4 = xX1/C, and y5 = xX3/C are unknown functions,
ε2 = h2/(3l2), C = εF , pJ = PJ l/C, q2 = Q2l

2/H, and x = r2/l are parameters; the prime denotes differentiation
with respect to the independent variable t.

System (5) describes the nonlinear axisymmetric bending of a dome-like shell for given loading parameters p1,
p3, and q2 and rigidity parameters ε, γ, and ν under boundary conditions specified on the support contour. It is
singular with respect to t (at the point t = 0) and the small parameter ε. We consider numerical solutions of two
nonlinear boundary-value problems of axisymmetric bending of simply supported and clamped conical domes.

Simply Supported Conical Dome Under Normal Pressure. The initial shape of the dome is deter-
mined by the constant parameters h and l and the angle between the meridian and base plane α. The parameters l
and α determine the height of the dome a = l sinα and the radius of the support contour b = l cosα. Functions (1)
have the form θ2 = α, r3 = a(1− t), and r2 = bt, and, hence, x = t cosα.

The dome is subjected to a uniformly distributed normal pressure of intensity P per unit area of the
undeformed base surface. The components of the surface load in system (5) are determined by the functions
p1 = −p sin y0, p3 = −p cos y0, and q2 = 0, where p = Pl/C is the normalized pressure parameter, which is positive
for the external pressure. In the case of a simply supported contour, the moment and displacements vanish at the
boundary point t = 1:

y1(1) = 0, y2(1) = cosα, y3(1) = 0. (6)

At the pole t = 0, we specify the symmetry conditions

y0(0) = α, y2(0) = 0, [t−1y5(t)]t→0 → 0. (7)

The nonlinear boundary-value problem (5)–(7) was solved by the shooting method: at the point t = 1, in
addition to (6), we specified three conditions

y0(1) = k1, y4(1) = k2, y5(1) = k3 (8)

and varied the parameters kJ to construct numerically a three-parameter family of solutions y(t, kJ) of the one-point
problem (5), (6), (8) (y is the vector of unknown functions). The values of the varied parameters corresponding to
the solution of the initial boundary-value problem were determined by an iterative method with the use of three
conditions (7) specified at the point t = 0. In practice, however, this method is ineffective because of the instability
associated with the presence of pole singularities in system (5). A solution stable with respect to small perturbations
of the boundary parameters was obtained by a modified algorithm in which the approximate relations X22 ≈ X11,
Y22 ≈ Y11, and y5 ≈ (1/2)pδ2 cos2 α were used at the point t = δ close to the pole. The first two relations are exact
at the pole. The third relation is obtained by integrating the last equation in (5) over the interval [0, δ] for y0 = α.
The calculations were performed with the use of the Mathcad-7 software package.
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Fig 1 Fig. 2

Fig. 1. Curves of equilibrium states for simply supported shells: curve 1 refers to α = 0 and
ε = 0.025, curve 2 to α = π/36 and ε = 0.025, curve 3 to α = π/18 and ε = 0.025, and curve 4 to
α = π/18 and ε = 0.013.

Fig. 2. Bending modes (a) and radial forces (b) of a dome with the parameters α = π/18 and
ε = 0.013 for points (p;w/a) = (0.09; 0.0786) (1), (0.06; 0.293) (2), (0; 0.590) (3), (−0.02; 0.968) (4),
(0; 1.338) (5), (0.04; 1.469) (6), and (0.1; 1.557) (7); the dashed curve is the initial configuration.

Figure 1 shows the curves of equilibrium states p(w/b) (w is the axial displacement of the apex) of the
dome with the rigidity parameters γ = 2.5 and ν = 0.25 and various values of the geometrical parameters α and ε.
Curve 1 refers to a simply supported circular plate. For ε = 0.025 and 0 6 α 6 π/36, the curves are monotonic.
For α > π/36, curves 3 and 4 have extremes, which shows that the solution of the boundary-value problem (5)–(7)
is multivalued within the finite interval p− 6 p 6 p+, where p− and p+ are the minimum and maximum values
of the function p(w/b), respectively. The states (shapes or modes) of equilibrium corresponding to the sections of
the curves that ascend from the coordinate origin are called the basic states and other states are called the buckled
states. For perfectly elastic domes, the basic states exist in the semi-infinite interval −∞ < p 6 p+ (sections of
the curves corresponding to the internal pressure p < 0 are not shown in Fig. 1). Curve 4 shows that, as the dome
thickness decreases, the buckled modes occur for negative values of the loading parameter.

Figure 2a shows the equilibrium configurations of the dome with the geometrical parameters α = π/18 and
ε = 0.013 in the coordinates (y/b, z/a) and Fig. 2b shows the distributions of the radial force calculated at several
points (p;w/a). The dashed curve is the initial configuration, curve 1 is the basic mode for the value of p close to
the critical value p+ ≈ 0.098, and curves 2–7 are the buckled modes. Mode 4 corresponds to the negative value of p
and modes 3 and 5 corresponding to the value p = 0 are stressed (in contrast to the initial state of the dome) and
sustained in equilibrium by the radial support force X1(1).

Clamped Conical Dome Under Normal Pressure. In contrast to (6), the boundary conditions of a
dome with a clamped support contour (displacements and rotations are absent) have the form

y0(1) = α, y2(1) = cosα, y3(1) = 0. (9)

Figures 3 and 4 show the numerical solution of the nonlinear boundary-value problem (5), (7), (9) for clamped
domes characterized by the same parameters as the simply supported domes considered above.

Figure 3 shows the curves of equilibrium states of the domes. Curve 1 refers to a clamped circular plate.
The behavior of curves 3 and 4 shows that the buckled states of equilibrium exist only for positive values of
the parameter p and no other states than the stress-free state exist for p = 0. Figure 4a shows the equilibrium
configurations of the dome with the parameters α = π/18 and ε = 0.013 and Fig. 4b shows the distributions of the
radial forces calculated at some points (p;w/a): curve 1 is the basic mode for the value of p close to the critical
value p+ ≈ 0.218 and curves 2–7 are the buckled modes.
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Fig. 3 Fig. 4

Fig. 3. Curves of equilibrium states for clamped shells: curve 1 refers to α = 0 and ε = 0.025,
curve 2 to α = π/36 and ε = 0.025, curve 3 to α = π/18 and ε = 0.025, and curve 4 to α = π/18
and ε = 0.013.

Fig. 4. Bending modes (a) and radial forces (b) of a clamped dome with the parameters α =
π/18, and ε = 0.013 for points (p;w/a) = (0.217; 0.230) (1), (0.2; 0.366) (2), (0.14; 0.558) (3),
(0.05; 1.034) (4), (0.05; 1.296) (5), (0.15; 1.484) (6), and (0.3; 1.604) (7); the dashed curve is the
initial configuration.

Fig. 5. Experimental (1) and theoretical (2 and 3) curves of equilibrium states of the
dome with the parameters α = π/36 and ε = 0.0025.

To compare numerical results with the experimental data of [11], we calculated a clamped conical dome with
the parameters α = π/36, γ = 2.7, ε = 0.0025, and ν = 0.35. In the experiments, these data correspond to a copper
conical shell of thickness 2h = 0.6 mm, base diameter 2b = 138 mm, and Young’s modulus E ≈ 105 MPa. Figure 5
shows the experimental data and calculation results in the coordinates (q, P ) (P is the pressure in MPa and q is the
parameter of state determined as the ratio of the volume enclosed between the undeformed and deformed surfaces of
the dome to the initial volume of the dome). Curve 1 refers to the experimental dependence P (q) and curves 2 and
3 to calculations. One can see that the calculated curve is branched. Intersection of branches 2 and 3 determines
the bifurcation of the axisymmetric states of equilibrium of the dome in the calculations.

Figure 6a shows the calculated equilibrium configurations and Fig. 6b shows the experimental distributions
of the bending moments of the dome at several points (p; q) of curves 2 and 3 (see Fig. 5): curve 1 is the basic
mode for the value of p close to the upper critical value p+ ≈ 0.0475, curve 4 is the buckled mode the lower critical
point of curve 3, and curves 3 and 5 are the buckled modes corresponding to the points lying at the left and right
ascending sections of curve 3 above the upper critical point.
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Fig. 6. Bending modes (a) and bending moments (b) of a clamped dome with
the parameters α = π/36 and ε = 0.0025 for points (p; q) = (0.045; 0.302) (1),
(0.012; 0.667) (2), (0.055; 0.365) (3), (0.0028; 1.383) (4), and (0.06; 1.87) (5).

The considerable discrepancy between the experimental and calculation results is caused by three factors.
1) The deformation of the experimental shell is close to axisymmetric up to the value P ≈ 0.068 MPa, for

which an intense wave formation (three waves) in the circumferential direction was observed, which corresponds to
an abrupt change in the slope of the tangent below the maximum point (curve 1 in Fig. 5); nonsymmetric buckling
occurred afterwards;

2) The deformation of the experimental shell was not completely elastic: when the load was removed, the
shell remained in the snapped-through state and there was evidence of plastic strain along the support contour and
at the crests of the circumferential waves;

3) The experimental curve of equilibrium states is discontinuous, since there are intervals of jumplike variation
in pressure for small variation in volume (in the neighborhood of the point q = 2), which is the evidence of dynamic
transitions from one state of equilibrium to another.

The first factor explains the discrepancy between the experimental and calculated curves in the neighborhood
of the maximum point and in the interval where the function P (q) decreases. The last two factors are responsible
for the difference between the ascending sections of these curves in the neighborhood of the point q = 2.

Consequently, beginning from the value q ≈ 0.083, the experimental and calculated curves in Fig. 5 corre-
spond to different states of the dome: the first curve corresponds to the elastoplastic state oscillating along the
circumferential coordinate, whereas the second curve corresponds to the elastic axisymmetric state. The agreement
between the sections of these curves that ascend from the coordinate origin confirms the high accuracy of the
formulation of the axisymmetric problem and the method of its solution.

The theoretical results are obtained under the assumption of a perfect linearly elastic material. The nonlin-
earities taken into account are of a kinematic character. A comparison with the experiment shows that precisely
these nonlinearities determine the character of deformation of shells. Deviation from the linear-elastic behavior of
the shell material leads only to quantitative changes in the characteristics of the process.
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